Magnetek barevný matný. Šnek
Magnetek barevný matný. Šnek
Magnet (z řeckého ???????? ????? magnétis líthos, "Magnesijský kámen") je objekt, který v prostoru ve svém okolí vytváří magnetické pole. Může mít formu permanentního magnetu nebo elektromagnetu. Permanentní magnety nepotřebují k vytváření magnetického pole vnější vlivy. Vyskytují se přirozeně v některých horninách, ale dají se také vyrobit. Elektromagnety potřebují k vytvoření magnetického pole elektrický proud - když se zvětší proud, zvětší se i magnetické pole.
Využití magnetů
- Záznamová média: Videokazety, audiokazety, pevné disky i diskety jsou všechno zařízení, kde jsou informace analogově nebo digitálně zaznamenané do ferrimagnetického materiálu jako proměnné magnetické pole. Čtecí zařízení pak tímto polem projíždí a jeho změny v něm generují elektrické signály, které jsou dále zpracovány.
- Kreditní nebo debetní karty do bankomatu používají na sobě magnetický proužek, ve kterém jsou zapsány potřebné údaje o držiteli.
- Přenášení předmětů a separace kovů: Dostatečně silné magnetické pole dokáže zvednout jakýkoliv fero- nebo paramagnetický materiál. Ve velmi silných magnetických polích je možné zvednout i organické materiály[1]. Hojně se tohoto využívá například na šrotovištích, kde mohutné elektromagnety zvedají celá auta. Také jde o dobrý způsob jak separovat kovový odpad ze smíšeného. Na třídící lince silný elektromagnet vyfiltruje veškeré kovové odpadky na běžícím páse.
- Domácí použití: Magnety na ledničce, v rukavicích, magnetické hračky (např. stavebnice z magnetických dílů), zavírače dvířek.
- Kompasy: Střelka kompasu reaguje na magnetické pole Země, její póly však musí být naopak, než je na ní vyznačeno.
- Audiotechnika: V reproduktorech jsou elektromagnety, které rozkmitávají své jádro. Toto jádro přenáší pak mechanické kmity do membrány, která vydává požadovaný zvuk. V elektrických kytarách jsou zase magnety v cívkách. Při rozeznění struny se kmity přenáší na magnet, jenž se rozkmitá a v cívce generuje proud. Proud je pak obvody zpracován a převeden na požadovaný tón a zvukový efekt.
- Medicína: Permanentní magnety a elektromagnety jsou součástí MRI přístrojů pro nahlížení do lidského těla bez nutnosti chirurgického zákroku. Navíc je tato metoda, na rozdíl třeba od rentgenu, zdravotně nezávadná a lidé nevykazují žádné známky ozáření.
Tlak jednoho magnetu
Maximální síla, kterou může magnet tahat nebo tlačit, je přibližně rovna síle magnetického pole uvnitř tenké vzduchové mezery uvnitř uzavřené magnetické smyčky o průřezu a indukci tohoto magnetu. Pokud tuto sílu vydělíme průřezem, dostaneme tlak, který magnetické pole způsobuje uvnitř hmoty magnetu. Vztah pro hledanou sílu je:
kde:
- F je síla [N]
- S je průřez magnetu [m2]
- B je magnetická indukce pole magnetu [T]
- ?0 je permeabilita vakua [H/m]
Pokud magnetem zvedáme ve vertikálním směru závaží o hmotnosti m, jeho maximální hmotnost je dána vztahem:
kde g je gravitační zrychlení [m/s2].
Síla mezi dvěma tyčovými magnety
Síla mezi dvěma stejnými válcovými tyčovými magnety, které jsou postaveny k sobě konci, je dána vztahem:
kde:
- B0 je magnetická indukce přímo na koncích magnetů [T]
- S je plocha průřezu každého magnetu [m2]
- l je délka každého magnetu [m]
- R je poloměr každého magnetu [m]
- x je vzdálenost mezi póly magnetů [m]
- ?0 je permeabilita vakua [H/m]
Magnetická indukce B0 je v tomto vztahu dána:
- D6b0f01400b.png" alt="B_0 \,=\, \frac{\mu_0}{2}M" />
kde M je magnetizace magnetů [A/m].
Všechny tyto vztahy jsou založené na Gilbertově modelu, který je použitelný i na větší vzdálenosti. V jiných modelech (například Ampérův model) jsou používány složitější vztahy, které někdy nemohou být vyřešeny analyticky. V těchto případech je nutné počítat pouze numericky.
Magnetek barevný matný. Šnek